1,259 research outputs found

    Omni-Directional Catadioptric Acquisition System

    Get PDF
    An omni-directional catadioptric acquisition system (ODCA system) is provided to address the problem of producing real time, 360°, stereoscopic video of remote events for virtual reality (VR) viewing. The ODCA system is a video image-capture assembly that includes a cylinder with multiple apertures arranged around its circumference to admit light as the ODCA system rotates about a central axis. Inside the cylinder, there is a mirror on the left and right side of each aperture that reflects light rays into the cylinder from different angles. As the cylinder rotates, the light rays are admitted through the apertures and reflected from the two mirrors to a curved mirror in the center of the cylinder. This curved mirror directs the rays down through a catadioptric lens assembly, which focuses the rays onto another curved mirror near the bottom of the ODCA system. This second mirror reflects the rays to a set of line-scan image sensors arranged around the second mirror. The line-scan image sensors capture the rays for later reproduction as stereoscopic video

    Regular and Irregular Signal Resampling

    Get PDF
    Thesis Supervisor: Alan V. Oppenheim Title: Ford Professor of EngineeringIn this thesis,w e consider three main resampling problems. The first is the sampling rate conversion problem in which the input and output grids are both regularly spaced. It is known that the output signal is obtained by applying a time-varying filter to the input signal. The existing methods for finding the coefficients of this filter inherently tradeoff computational and memory requirements. Instead,w e present a recursive scheme for which the computational and memory requirements are both low. In the second problem which we consider,w e are given the instantaneous samples of a continuous-time (CT) signal taken on an irregular grid from which we wish to obtain samples on a regular grid. This is referred to as the nonuniform sampling problem. We present a noniterative algorithm for solving this problem,whic h,in contrast to the known iterative algorithms,can easily be implemented in real time. We show that each output point may be calculated by using only a finite number of input points, with an error which falls exponentially in the number of points used. Finally we look at the nonuniform lowpass reconstruction problem. In this case,w e are given regular samples of a CT signal from which we wish to obtain amplitudes for a sequence of irregularly spaced impulses. These amplitudes are chosen so that the original CT signal may be recovered by lowpass filtering this sequence of impulses. We present a general solution which exhibits the same exponential localization obtained for the nonuniform sampling problem. We also consider a special case in which the irregular grid is obtained by deleting a single point from an otherwise regular grid. We refer to this as the missing pixel problem,since it may be used to model cases in which a single defective element is present in a regularly spaced array such as the pixel arrays used in flat-panel video displays. We present an optimal solution which minimizes the energy of the reconstruction error,sub ject to the constraint that only a given number of pixels may be adjusted

    Estimating the Distribution of Japanese Encephalitis Vectors in Australia Using Ecological Niche Modelling

    Get PDF
    Recent Japanese encephalitis virus (JEV) outbreaks in southeastern Australia have sparked interest into epidemiological factors surrounding the virus’ novel emergence in this region. Here, the geographic distribution of mosquito species known to be competent JEV vectors in the country was estimated by combining known mosquito occurrences and ecological drivers of distribution to reveal insights into communities at highest risk of infectious disease transmission. Species distribution models predicted that Culex annulirostris and Culex sitiens presence was mostly likely along Australia’s eastern and northern coastline, while Culex quinquefasciatus presence was estimated to be most likely near inland regions of southern Australia as well as coastal regions of Western Australia. While Culex annulirostris is considered the dominant JEV vector in Australia, our ecological niche models emphasise the need for further entomological surveillance and JEV research within Australia

    Japanese Encephalitis Enzootic and Epidemic Risks across Australia

    Get PDF
    Japanese encephalitis virus (JEV) is an arboviral, encephalitogenic, zoonotic flavivirus characterized by its complex epidemiology whose transmission cycle involves reservoir and amplifying hosts, competent vector species and optimal environmental conditions. Although typically endemic in Asia and parts of the Pacific Islands, unprecedented outbreaks in both humans and domestic pigs in southeastern Australia emphasize the virus’ expanding geographical range. To estimate areas at highest risk of JEV transmission in Australia, ecological niche models of vectors and waterbirds, a sample of piggery coordinates and feral pig population density models were combined using mathematical and geospatial mapping techniques. These results highlight that both coastal and inland regions across the continent are estimated to have varying risks of enzootic and/or epidemic JEV transmission. We recommend increased surveillance of waterbirds, feral pigs and mosquito populations in areas where domestic pigs and human populations are present

    Probing the structure and dynamics of molecular clusters using rotational wavepackets

    Full text link
    The chemical and physical properties of molecular clusters can heavily depend on their size, which makes them very attractive for the design of new materials with tailored properties. Deriving the structure and dynamics of clusters is therefore of major interest in science. Weakly bound clusters can be studied using conventional spectroscopic techniques, but the number of lines observed is often too small for a comprehensive structural analysis. Impulsive alignment generates rotational wavepackets, which provides simultaneous information on structure and dynamics, as has been demonstrated successfully for isolated molecules. Here, we apply this technique for the firsttime to clusters comprising of a molecule and a single helium atom. By forcing the population of high rotational levels in intense laser fields we demonstrate the generation of rich rotational line spectra for this system, establishing the highly delocalised structure and the coherence of rotational wavepacket propagation. Our findings enable studies of clusters of different sizes and complexity as well as incipient superfluidity effects using wavepacket methods.Comment: 5 pages, 6 figure

    Low threshold edge emitting polymer distributed feedback laser based on a square lattice

    Get PDF
    Copyright © 2005 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters 86 (2005) and may be found at http://link.aip.org/link/?APPLAB/86/161102/1We report the demonstration of a low-threshold, edge-emitting polymer distributed feedback laser based on a square lattice. The lattice constant was 268 nm, which corresponds to a lattice line spacing in the ΓM symmetry direction of the Brillouin zone of 189 nm. The latter was employed to provide feedback at 630 nm via a first order diffraction process. The device operated on two longitudinal modes, which were situated on the band-edge near the M symmetry point. The two modes had thresholds of 0.66 nJ and 1.2 nJ—significantly lower than comparable surface-emitting DFB lasers. Angle dependent photoluminescence experiments were performed to investigate the effect of the square lattice on the laser operation and the origin of the low threshold

    An examination of the precipitation delivery mechanisms for Dolleman Island, eastern Antarctic Peninsula

    Get PDF
    Copyright @ 2004 Wiley-BlackwellThe variability of size and source of significant precipitation events were studied at an Antarctic ice core drilling site: Dolleman Island (DI), located on the eastern coast of the Antarctic Peninsula. Significant precipitation events that occur at DI were temporally located in the European Centre for Medium-Range Weather Forecasting (ECMWF) reanalysis data set, ERA-40. The annual and summer precipitation totals from ERA-40 at DI both show significant increases over the reanalysis period. Three-dimensional backwards air parcel trajectories were then run for 5 d using the ECMWF ERA-15 wind fields. Cluster analyses were performed on two sets of these backwards trajectories: all days in the range 1979–1992 (the climatological time-scale) and a subset of days when a significant precipitation event occurred. The principal air mass sources and delivery mechanisms were found to be the Weddell Sea via lee cyclogenesis, the South Atlantic when there was a weak circumpolar trough (CPT) and the South Pacific when the CPT was deep. The occurrence of precipitation bearing air masses arriving via a strong CPT was found to have a significant correlation with the southern annular mode (SAM); however, the arrival of air masses from the same region over the climatological time-scale showed no such correlation. Despite the dominance in both groups of back trajectories of the westerly circulation around Antarctica, some other key patterns were identified. Most notably there was a higher frequency of lee cyclogenesis events in the significant precipitation trajectories compared to the climatological time-scale. There was also a tendency for precipitation trajectories to come from more northerly latitudes, mostly from 50–70°S. The El Niño Southern Oscillation (ENSO) was found to have a strong influence on the mechanism by which the precipitation was delivered; the frequency of occurrence of precipitation from the east (west) of DI increased during El Niño (La Niña) events

    Increased Matrix Metalloproteinase (MMPs) Levels Do Not Predict Disease Severity or Progression in Emphysema

    Get PDF
    Rationale: Though matrix metalloproteinases (MMPs) are critical in the pathogenesis of COPD, their utility as a disease biomarker remains uncertain. This study aimed to determine whether bronchoalveolar lavage (BALF) or plasma MMP measurements correlated with disease severity or functional decline in emphysema. Methods: Enzyme-linked immunosorbent assay and luminex assays measured MMP-1, -9, -12 and tissue inhibitor of matrix metalloproteinase-1 in the BALF and plasma of non-smokers, smokers with normal lung function and moderate-to-severe emphysema subjects. In the cohort of 101 emphysema subjects correlative analyses were done to determine if MMP or TIMP-1 levels were associated with key disease parameters or change in lung function over an 18-month time period. Main Results: Compared to non-smoking controls, MMP and TIMP-1 BALF levels were significantly elevated in the emphysema cohort. Though MMP-1 was elevated in both the normal smoker and emphysema groups, collagenase activity was only increased in the emphysema subjects. In contrast to BALF, plasma MMP-9 and TIMP-1 levels were actually decreased in the emphysema cohort compared to the control groups. Both in the BALF and plasma, MMP and TIMP-1 measurements in the emphysema subjects did not correlate with important disease parameters and were not predictive of subsequent functional decline. Conclusions: MMPs are altered in the BALF and plasma of emphysema; however, the changes in MMPs correlate poorly with parameters of disease intensity or progression. Though MMPs are pivotal in the pathogenesis of COPD, these findings suggest that measuring MMPs will have limited utility as a prognostic marker in this disease. © 2013 D'Armiento et al

    The Hubble Deep Field South Flanking Fields

    Full text link
    As part of the Hubble Deep Field South program, a set of shorter 2-orbit observations were obtained of the area adjacent to the deep fields. The WFPC2 flanking fields cover a contiguous solid angle of 48 square arcminutes. Parallel observations with the STIS and NICMOS instruments produce a patchwork of additional fields with optical and near-infrared (1.6 micron) response. Deeper parallel exposures with WFPC2 and NICMOS were obtained when STIS observed the NICMOS deep field. These deeper fields are offset from the rest, and an extended low surface brightness object is visible in the deeper WFPC2 flanking field. In this data paper, which serves as an archival record of the project, we discuss the observations and data reduction, and present SExtractor source catalogs and number counts derived from the data. Number counts are broadly consistent with previous surveys from both ground and space. Among other things, these flanking field observations are useful for defining slit masks for spectroscopic follow-up over a wider area around the deep fields, for studying large-scale structure that extends beyond the deep fields, for future supernova searches, and for number counts and morphological studies, but their ultimate utility will be defined by the astronomical community.Comment: 46 pages, 15 figures. Images and full catalogs available via the HDF-S at http://www.stsci.edu/ftp/science/hdfsouth/hdfs.html at present. The paper is accepted for the February 2003 Astronomical Journal. Full versions of the catalogs will also be available on-line from AJ after publicatio

    Antenatal corticosteroids and the renin-angiotensin-aldosterone system in adolescents born preterm

    Get PDF
    Antenatal corticosteroid (ANCS) treatment hastens fetal lung maturity and improves survival of premature infants, but the long-term effects of ANCS are not well-described. Animal models suggest ANCS increases the risk of cardiovascular disease through programmed changes in the renin-angiotensin (Ang)-aldosterone system (RAAS). We hypothesized that ANCS exposure alters the RAAS in adolescents born prematurely
    • …
    corecore